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A B S T R A C T

The aviation industry is a changing industry in which several factors influence the performance of the airport
and the network of airports that are interconnected. Business models, technical operations in airspace and in the
airfield, societal conditions among others are some of the ones that must be taken into account in order to get a
full understanding of the cause-effect relationships that hinder the proper management of the system. In recent
times with the evolution of the computer technology and the level of maturity of the algorithms used to simulate
and analyse dynamic systems, simulation has gained more importance than before. Simulation approaches
emerge as the ones that are able to take into account the stochastic nature of dynamic systems besides all the
different factors that impact the systems under study. This is something that traditional analytical approaches
could not evaluate and therefore under the constant change of the systems they lack of the proper flexibility to
provide timely solutions. However with the popularity that simulation has gained, the different steps and good
practices that must be taken into account are commonly forgotten when the simulation model is developed and
then the system is analysed; in the particular case of the aviation industry this situation has gained particular
importance.

The current paper addresses some of the common flaws and pitfalls incurred when simulation is used for
analysis of aeronautical systems. Pitfalls’ classification and suggestions for avoiding them are presented. Some
flaws are exemplified through cases in which the conclusion from the analysis might differ depending on the
angle of the analysis performed with the implications of different economic consequences for the decision
makers. The main objective of this paper is that it serves as an eye-opener for a relatively novel researcher or
practitioners in the art of simulation. It will serve for avoiding these common flaws when using simulation for
addressing aviation problems.

1. Introduction

The air mode is a growing mode which gains more and more im-
portance, and in 2014, the number of flights in Europe increased by
1.7% compared to 2013 (Eurocontrol, 2015) and the number of pas-
sengers grew by 5.4% compared to 2013 reaching 3.3 billion of pas-
sengers in that year (IATA, 2014).

According to these trends, an increment in volume of flights and
number of passengers for the next coming years is expected. This si-
tuation is translated in a massive use of resources at both air and ground
levels; for these reasons, it is highly likely to encounter congestion
problems in many airports worldwide and in particular in the most
important hubs. In order to avoid the mentioned situation, the im-
provement of capacity has become a challenge which must be ad-
dressed in the best possible way, taking into account all the different

factors and variables that disrupt the system making it more difficult to
manage.

In order to cope with capacity issues, the analysts use different
techniques that range from the typical scenario-based EXCEL sheets to
thorough studies about the movements and operations in the system
using a specific-purpose simulator. In recent years and with the evo-
lution of digital computers techniques such as simulation-based analysis
has become popular and consultancy companies are using them for
analysing aviation operations performance such as Mott MacDonald
(UK), NACO (The Netherlands), ARC-Consultants (Germany), Arup
(UK) among others. In addition to the consultant companies that are
using simulation-based analysis for addressing capacity problems, the
airports and airport operators are becoming keen also to the use of
these novel technologies (ARC, 2015).
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2. Simulation approach

Nowadays, simulation alone and sometimes combined with opti-
mization techniques are used in diverse industries to deal with the
decision-making activity by searching optimal or feasible solutions to
real problems. The use of simulation as an analysis tool facilitates the
design and assessment of strategies reducing the risk of poor outcomes.
Furthermore, simulation models have proved to be useful for examining
the performance of different system configurations and/or alternative
operating procedures for complex logistic or manufacturing systems
among other applications (Longo, 2013). However in the aviation in-
dustry, its use is not common practice yet but it is becoming an ap-
proach that some stakeholders and researchers are exploring (Mujica,
2015; Mujica et al., 2014; Zuniga et al., 2011).

Simulation provides an environment for studying the dynamic be-
haviour of a system with uncertainty under different operating condi-
tions, using continuous, discrete or hybrid models to represent it (Banks
et al., 2010).

There are different modelling approaches such as system dynamics,
agent technology or discrete-event systems (DES). The former is applied
in systems in which the state variables change continuously in time
such as the level in a tank or the temperature in a chemical reactor;
agent technology is a relatively novel approach in which the power of
computers are used to calculate independent behaviour of the entities
within a system during specified intervals of time (Becu et al., 2003)
while DES are suitable for analysing systems in which the variables that
represent the state of the system (state variables) change at particular
instants of time. Under the DES approach, the change in the system
takes place due to the occurrence of events that modify the values of the
state variables. This makes the resulting models asynchronous, in-
herently concurrent, and nonlinear, rendering their modelling potential
for modelling real systems (which in most of the cases behave in a non-
linear and stochastic fashion). The simulation-based analysis metho-
dology has been so far applied successfully in different industrial fields
and its steps vary depending on the objective pursued but the basic ones
are presented in Fig. 1 (Banks et al., 2010).

Banks et al. (2010) determine that the behaviour of a system which
evolves over time and where uncertainty plays an important role in the
outcome can be studied by developing a simulation model. This model
takes the form of a set of assumptions concerning the operation of the
system; such assumptions are expressed in mathematical, logical, and
symbolic relationships between the entities of the system. Simulation
involves the generation of an artificial history of a system, and the
observation of that artificial history to draw inferences concerning the
operating characteristics of the real or future system.

There are a lot of simulation advantages, some of them involve the
possibility of exploring new policies and procedures without disrupting
ongoing operations of the real system; new systems can be tested
without committing resources for their acquisition; and time which is a
very important resource nowadays, can be compressed or expanded
with the simulation. Another key characteristic is that it is useful for
getting insight into the interaction of stochastic variables within the
system. A simulation study can help therefore to understand how the
system operates rather than how the system is perceived by the analysts
or user of the system.

Due to these characteristics, simulation-based analysis is a powerful
technique which when properly used can give answers to different
questions about the system under study such as:

• What is the impact of variability in the system?

• Do the systems have enough capacity throughout the seasons?

• What would be the best configuration for the objective pursued?

• What would be the impact of changes in the system?

• How can we manage the resources at hand in order to minimize
disruption?

• Do we need to increase facilities?

• Where is the bottleneck in the system?

• How can capacity be increased?

• How can throughput be increased?

• How can waiting times and queuing be reduced?

The advantages and potential of simulation or simulation-based
analysis for the study and improvement of aviation performance are
increasingly recognized in a wide range of activities such as passenger
flow, logistics and study of airspace among others. However, as it has
been mentioned, the methodology must be properly implemented in
order to reduce the risk of ending up with unfeasible or poor solutions.

In the next sections some of the flaws that any analysts can incur
when performing a simulation-based study are revisited and for the case
of aviation problems emphasis is put on some of the flaws that have
been identified by the authors. Finally, the authors enhance the

Fig. 1. The basic steps in the simulation-based methodology.
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discussion with the presentation of two cases in which at first glance
one could incur wrong conclusions.

3. Common pitfalls in simulation projects

In order to develop a simulation project properly, it is necessary to
identify the pitfalls in which its development and execution may be
incurred. In this section, a list of some errors given from different au-
thors point out which ones of them can be present in aviation research.

Some of the first authors that have written about this topic are
Ulgen and Shore (1996) that presented a methodology to avoid pitfalls
and a table with a pitfalls’ classification as the next one (Table 1):

Other authors as Schmeiser (2001) based their analysis on the sta-
tistical mistakes done when working with input and output data.

Jain (2008) mentioned that common mistakes are:

• Inappropriate level of detail: may think more detail is always better,
but More detail =>More time, Bugs, & CPU time

• More parameters≠More accurate (if unable to precisely model a
parameter)

• Unverified simulation models: e.g., due to software bugs

• Invalid models (e.g., for parameters): model vs. reality

• Improperly Handled Initial Conditions

• Initial part of a simulation is usually not the same as steady state,
and thus should be treated separately

• Too Short Simulations

• Length of simulation should depend on the required accuracy and
the variance of observed quantities

• Poor Random Number Generators: Safer to use a well-known gen-
erator

• Improper Selection of Seeds. E.g., zero seeds or same seeds for all
streams =>correlated random streams

Then Law (2003) classified seventeen pitfalls in simulation model-
ling and they were classified into four categories as follows:

a. Modelling and validation

• Failure to have a well-defined set of objectives at the beginning of
the study

• Misunderstanding of simulation by management

• Failure to communicate with the decision-maker on a regular basis

• Failure to collect good system data

• Inappropriate level of model detail – this is one of the most common
errors, particularly among new analysts

• Treating a simulation study as if it were primarily an exercise in
computer programming

• Lack of knowledge of simulation methodology and also probability
and statistics

b. Simulation software

• Inappropriate simulation software – either too inflexible or too
difficult to use

• Belief that so-called “easy-to-use software” requires a lower level of
technical competence – regardless of the software used, one still has
to deal with such issues as problem formulation, what data to col-
lect, model validation, etc.

• “Blindly” using software without understanding its underlying as-
sumptions, which might be poorly documented

• Misuse of animation – making an important decision about the
system of interest based primarily on viewing an animation for a
short period of time, rather than on the basis of a careful statistical
analysis of the simulation output data

c. Modelling system randomness

• Replacing an input probability distribution by its mean

• Incorrect choice of input probability distributions – normal or uni-
form distributions will rarely be correct

• Cavalier use of the triangular distribution when system data could
be collected – triangular distributions cannot accurately represent a
source of randomness whose density function has a long right tail, a
common situation in practice

d. Design and analysis of simulation

• Misinterpretation of simulation results – treating simulation output
statistics as if they were the true model performance measures

• Failure to have a warm-up period when the steady-state behaviour
of the system is of interest

• Analysing (correlated) output data from one replication of a simu-
lation model using formulas that assume independence – variances
might be grossly underestimated.

Banks and Chwif (2010), compiled some warnings for simulation
modelling and they are grouped into seven categories as follows: Data
Collection, Model Building, Verification and Validation, Analysis, Si-
mulation Graphics, Managing the Simulation Process, and Human
Factors, Knowledge, and Abilities.

• Data collection
Anticipate having problems with input data.
Choosing the wrong input distribution may hurt, but it may not be
that harmful.
Choosing the wrong input distribution may hurt, but it may be
harmful.
Use up time, not time between breakdowns when modelling.
All forecasts are wrong!
The amount of data that you have is important.
Collect your input data properly.

• Model building
Keep the model simple, but not too simple. Make the model com-
plex, but not too complex.
Create a conceptual model prior to the implementation of the
computerized model.
Start simply, verify, validate, and grow the model, verify, validate,

Table 1
Pitfalls of simulation (Ulgen and Shore, 1996).

Process Related Pitfalls

1 Unclear project objectives
2 Keeping the customer uninformed
3 Not establishing a base for comparison
4 Unrealistic expectations from the study
5 Too much faith in the input data
6 Infrequent reporting and lack of documentation
7 Lack of frequent customer interaction
8 Inadequate reporting and lack of documentation
9 Frequent scope changes
10 Too much faith in the simulation output
11 Inadequate review of the project while it is ongoing
12 Spending more time on the model rather than the problem
13 Not knowing when to stop

Model Related Pitfalls

1 Model assumptions not validated
2 Starting with an overly complex model
3 Losing sight of the implementation issues
4 Using the model sparingly
5 Not understanding the model's limits

People Related Pitfalls

1 Lack of teamwork
2 Not involving the key decision makers in the project
3 Not knowing and/or listening to the costumer
4 Providing a small list of alternatives to the costumer
5 Being afraid of advocating change
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and grow the model, etc.
Validate the conceptual model before proceeding with model
building.
Maintain frequent interaction with the client.

• Verification and validation
Do a lot of verification and validation, not a little.
It’s possible to invalidate a simulation model, but impossible to
validate a simulation model.
Check basic principles of queuing before the simulation commences
so that you can examine the appropriate range of policy options.

• Analysis
Do not simulate outputs when you should not simulate outputs.
Avoid point estimates.
Know when to warm up a system (non-terminating) and when not to
warm up a system (terminating).
Steady-state to me may not be steady-state to you because it is
usually determined visually.
Have an appropriate performance measure. It is not always appro-
priate to find the system that has the lowest average number of loads
(or, lowest average time that loads spend in the system), but the one
that minimizes cost or maximizes profit.
If you have a ‘push’ system, production is not an appropriate output
measure.
Avoid a type III error.

• Simulation graphics
Do not get over impressed by fancy graphics.
Organize the model on the screen so that viewers have a general
view of the process.

• Managing the simulation process
The simulation process is a project and thus all principles of project
management should be followed.
One of the first definitions in a simulation study is its objective.
Do not promise the sun and deliver only the moon. Simulation is not
a panacea that will solve every problem.
Do not accept any assignments unless the resources are there to
make it happen.
Do not cut phases of the simulation modelling process in order to
reduce the time and cost of a simulation study.
Determine how close to reality you need to represent. Acquire the
right level of power in your software.
The manager of the simulation project should understand the si-
mulation process in order to adequately manage it.

• Human factors, knowledge, and abilities
Relearn your basic statistics so that you can explain a Type I error,
Type II error, confidence interval, and so on.
We communicate through spreadsheets. Do become very good at
using them.
The most critical component of a simulation project is not software.
Neither is it hardware. It is ‘human ware’. Beware of the SINSFIT
principle: Simulation is no substitute for intelligent thinking.
Becoming a good modeller takes time and experience.

Barth et al. (2012) specified five typical pitfalls that are associated
with the process of applying simulation models and characterize the
“logic of failure” (Dörner, 1996) behind the pitfalls.

1. Distraction Pitfall. The involvement of other stakeholders in the
modelling process is likely to be a main driver for the distraction
pitfall. In a business environment as well as in the armed forces,
clients or superiors might request to have several questions ad-
dressed in one model. In science, similar pressures might be exerted
from fellow scientists in an audience, supervisors, reviewers, etc.
Inexperienced modellers, in particular, can succumb to believing
that they are “not accomplishing enough” in the project.

2. Complexity Pitfall. The model structure has to represent reality
with sufficient precision for the simulation to yield applicable

results. It is a balancing act between simplifying and exact re-
presentation. Trying to do the second sometimes even causes a si-
mulation project to fail.

3. Implementation Pitfall. Software support is often needed to gen-
erate the actual simulation model once the conceptual design is fi-
nalized. As the domain experts involved in modelling are often
laymen with regard to IT implementation, they are at risk of
choosing unsuitable software for the simulation.

4. Interpretation Pitfall. Upon completing and testing an im-
plemented simulation model, one can finally work with it. However,
one can often observe that users are prone to losing their critical
distance to the results produced by a simulation. It happens for
example when the analysed aspect is not part of the reality re-
presented by the model or when the model is too simple and does
not allow for valid interpretations. These wrong conclusions re-
sulting from a loss of critical distance is what we call the inter-
pretation pitfall.

5. Acceptance Pitfall. Even if one is convinced of the simulation re-
sults' validity and accuracy, this may not be true for third-party
decision makers. In many settings, third-party decision-makers have
the final word and hardly know the model. The more distant they
are to the modelling process and the more complex the simulation
model is, the more sceptical they tend to be about the
results.Uhrmarcher (2012) showed seven pitfalls in the success of a

PhD project in modelling and simulation. These pitfalls are listed below:

1. Don’t know whether it is modelling or simulation. “Simulation is
an experiment performed on a model” – this definition is attributed
to Granino Korn and John Wait in Cellier (1991, p. 6). It is a quite
commonly agreed upon interpretation of simulation and clarifies the
relationship between modelling and simulation.

2. No separation of concerns. That means according to the author:
separation of concerns facilitates to focus your research, to make a
contribution to a particular field, and to use the work of others.
There is a huge portfolio of methods already available. Without
separation of concerns, it is very likely to redo what others have
already done, and even to do this poorly.

3. No clear scientific question. Independently whether you are de-
veloping or applying modelling and simulation methods, it is im-
portant to clarify the reasons you selected a particular formalism or
method to work with.

4. Implementing everything from scratch. The effort in developing
a modelling and simulation tool is often underestimated. In addition
to providing support for modelling, e.g., providing a model editor
and implementing an execution algorithm, means to observe, store,
and analyse data needs to be realized or integrated. In order to
overcome this situation, one alternative is to use one of the mod-
elling and simulation frameworks around that are aimed at facil-
itating the development of modelling and simulation tools by re-
using.

5. Unsupported claims. A prerequisite for any meaningful claim (and
thus for circumventing Pitfall 5) is to have a clearly defined scien-
tific question (see Pitfall 3).

6. Toy duck approach. Deficiencies in validity referring to model,
experiments, and software (see also Pitfall 4) will endanger the
credibility of the simulation study. The lack of valid experiments has
been identified as a reason for the credibility crisis of simulation in
the area of performance evaluation (Pawlikowski, 2002; Kurkowski
et al., 2005).

7. The tunnel view. The interdisciplinary nature of modelling and
simulation should help looking across the boundaries of his or her
research, however, interestingly it seems to have the opposite effect.
The different vocabulary used in different disciplines makes it
harder to locate related work.

These are common pitfalls when someone is applying simulation for
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the analysis of dynamic stochastic systems such as manufacturing, lo-
gistics, and supply chain among others. According to this review of the
literature and the experience of the authors, we identified that some of
them are appearing recurrently in the simulation studies performed in
the aviation industry as we present in the following section. So the
contribution of this paper is mainly on the methodological application
of the simulation methodology in the field of aviation industries; in
addition, the authors have identified some situations that can be re-
cognized as flaws or pitfalls in the particular case of aviation and that
are marginally mentioned in the previous review.

4. Common flaws when using simulation-based analysis in
aviation

Ulgen and Shore (1996) published their article 21 years ago, since
then other authors have been written on the subject, and some of the
flaws detected still remain. According to the classification that Ulgen
and Shore gave about the type of failures based on processes, models
and people, later authors focused their attention on some of them and
went deeper, others had a more general vision, and what must also be
noted is that depending on the type of simulation and where it is going
to be applied is where you can find more frequent errors. For what
concerns this article, Table 2 presents the categories proposed in this
work and it shows which of the failures coincide with the authors
mentioned. Many of the flaws reported in this review have been over-
come over time, others persist and it is of utmost importance to point
them out regularly so as not to lose sight of the importance of con-
sidering them when applying the simulation methodology. The dif-
ferent categories of flaws in aviation are elaborated in this section so it
is clear for the analyst where to pay attention when analysing an
aviation system.

The following are the common flaws identified when simulation-
based analysis is put into practice in the analysis of aviation systems.
These flaws must be avoided if the system is going to be properly un-
derstood and when possible improved.

Flaw A) Not knowing the objective of the study.
The first step in the use of the methodology is to clearly define the

objective pursued. Once we have the objective stated clear it is rela-
tively easy to identify which tool/technique would be sufficient for it. It
is common to find practitioners that think the tool that was useful for
some companies could be useful for theirs. With a clear objective of the
study it becomes easier to define or decide whether we need a high-
detailed simulation program (CAST [ARC, 2015], AirTop [AirTopSoft,
2017], Quest [Dassault Systems, 2016] or other), a general-purpose one
(SIMIO [SIMIO, 2017], ARENA [Arena, 2017], Anylogic [Anylogic,
2017]) or a high-level decision-support tool for planning (Beontra’s
scenario planning [Beontra, 2017], EXCEL, etc.). This initial decision
has important implications in the time, the quality of the results and the

ratio price/quality. In addition, the success of the project or study might
be at risk if a bad decision is made when the objective is not known.
Thus for the different decision levels (strategic, tactical and opera-
tional) different simulation-based tools must be selected. One size DOES
NOT fit all.

Flaw B) Not performing a properly conceptual design.
It is common that when starting a simulation-based study, the

analysts are anxious to start playing around with the software tool re-
cently purchased (CAST, SIMIO, AirTop, Anylogic, etc.). Since the cost
of the simulation software programs is relatively high in comparison
with other tool like Office or AutoCAD is normal to expect to have
benefited from it as soon as possible. However, the correct technical use
of the tool does not imply that the analyst is skilled for performing
simulation studies. The simulation-based analysis is a methodology that
has different important steps that must be followed in order to be
successful in performing the study. The translation of the conceptual
model to the computer tools (i.e. software) is just another step of the
methodology which is required for properly mastering the methodology
(see Fig. 1, step 5). Not understanding the simulation-based metho-
dology might involve high risk of failure in the study and/or the failure
of the implementations proposed after the results and conclusions are
taken from the model (garbage-in- garbage-out).

Flaw C) Confusing verification with validation.
We must differentiate between verification and validation and we

explain the difference in order to make them clear. Fig. 2 shows the
process of verification and validation (Sargent and Goldsman, 2016).

Conceptual model verification is defined as ensuring that the the-
ories and assumptions underlying the conceptual model are correct and
the model representation of the problem entity is “reasonable” for the
intended purpose of the model. Computerized model verification thus is
defined as assuring that the computer programming and implementa-
tion of the conceptual model are correct. In the particular case of
aviation models, this means that the analyst should verify that the logic
of the entities (passengers, aircraft, and vehicles) is reasonable ac-
cording to the system at hand and the process they follow within the
model makes sense; in other words it is a superficial check of the logic
of the computer model (e.g. checking that from arrival to departure of
an aircraft it follows speeds according to reality or that the speeds of
passengers within a terminal model are not constant or too fast). For
this verification step it should be an easy and fast evaluation, for in-
stance, if we are developing an airside simulation we would suggest
that the analyst follows the complete route of an aircraft to check that
all the speed, logic, route are logical.

On the other hand, operational validation is defined as determining
whether the model’s output behaviour has a satisfactory range of ac-
curacy for the model’s intended purpose over the domain of the model’s
intended applicability. This is where much of the validation testing and
evaluation take place. Since the computerized (simulation) model as

Table 2
Comparison seven flaws and literature review.

Mujica Mota-Flores Ulgen (1996) Law (2003) Jain (2008) Banks (2010) Barth (2012) Uhrmarcher (2012)

Flaw A ✓ ✓
Not knowing the objective of the study
Flaw B ✓
Not performing a properly conceptual design
Flaw C ✓
Confusing verification with validation
Flaw D ✓ ✓
The habit of drawing conclusions from a deterministic value
Flaw E ✓
Getting lost in numbers
Flaw F ✓ ✓
Proposing solutions in non-priority areas
Flaw G
Lack of rigor when analysing the outcome ✓ ✓

M. Mujica Mota, I. Flores Case Studies on Transport Policy 8 (2020) 67–75

71



shown in Fig. 2 is used in operational validation, any deficiencies found
may be caused by what resulted from any of the earlier steps that are
involved in developing the simulation model, including developing the
system’s theories or having invalid data. The validation then is a pro-
cedure which is supported by quantitative analysis (statistical tools)
and it will be fundamental for getting the confidence levels we need
from the models in order to use them for experimenting and making
decisions over the real system.

Table 3 presents a classification of validation approaches for op-
erational validity. In this table, comparison means comparing/testing
the model and system input-output behaviour. The validation suggested
for aviation systems is basically quantitative analysis in which both the
directions and the precise magnitudes of the output behaviours are
examined. Sometimes when data are not available it is necessary to
approach Experts (e.g., subject matter experts) on the system who often
know the directions and frequently know the “general values” of the
magnitudes of the output behaviours.

There are different approaches for performing a validation of the
different element of the models, Fig. 3 illustrates most of the common
ones.

For the operative analysis and in particular for the aviation systems,
it is recommended to look always for an objective approach, in the
Fig. 3 it would correspond to the left branch. In earlier years the sub-
jective approach such as face validity (expert one), or Turing test had
been widely used since the availability and capacity for storing data
were very limited. Nowadays the situation has changed and the sub-
jective validation is not enough to get confidence in the model devel-
oped. For that reason, it is necessary to have statistically-skilled people
within the industry. It is not common to find analysts trained in the
hard statistical techniques used for validation, therefore, that type of
people are valuable more and more. Regarding the quantitative tests,

some common ones are the t-test, chi2, ANOVA, Z-test and hypothesis
tests. They are the key to get objective confidence in the results ob-
tained from the model. Therefore these tests are the equivalent to the
experiments performed by scientists in history to demonstrate that the
theory (model) can be applied with confidence.

As it has been mentioned, the visual comparison was part of the old
methods for validating a model and is still part of the verification
procedure. Then the flaw C consists that instead of performing the
statistical analysis required some prefer to compare the qualitative
performance (sometimes obtained in the animation which must be used
for verification) with qualitative performance perceived in the system
(see Fig. 4).

Flaw D) The habit of drawing conclusions from a deterministic value.
This flaw is also known as the flaw of averages (Zavage et al., 2012);

it consists of putting focus only on the average value obtained from the
results such as KPIs values instead of analysing the whole picture
(average, standard deviation, skewness, etc.) and the outcomes in-
cluding the variability of the system which in dynamic systems is a
fundamental part of them. In the particular case of aeronautical sys-
tems, variability should be an important factor to address if we want to
improve the performance of these systems. In order to avoid this error,
it is necessary to analyse how important the variability is and what the
implication would be if we reduced it and in addition how it would
impact the performance of the system.

Flaw E) Getting lost in numbers.
This error implies that when we have a model at hand it is easy to

generate all kinds of information such as waiting times, throughput,
standard deviations, delays in different parts and all kinds of KPIs and
their average, minimum and maximum values. Under these circum-
stances, it is easy to get lost in numbers and be overwhelmed with the
information. Therefore it is necessary to have a structural approach that
allows us to identify the different constraints in the system, identify
how the system behaves, identify the bottleneck and only then it would
become natural to look for the information in order to propose solu-
tions. For overcoming these flaws it is suggested that the analyst un-
derstands the theory of constraints, masters the techniques of design of
experiments and spends enough time developing a conceptual design
where the expected outcomes and performance indicators have been
properly identified ahead of the development of the computer model.

Flaw F) Proposing solutions in non-priority areas.
As a natural consequence of the previous flaw, it is very common to

propose solutions in areas that would not significantly impact the
performance of the whole system. For example, in many terminals, it is
common to see that the most congested area is at passport control or
security and in addition, it is also easy to perceive the unbalance of the
system. However, by just pure observation it is not possible to conclude
that a particular functional area of a terminal or a system is the bot-
tleneck. We need to perform a structured analysis for identifying it. This
is relatively easy to evaluate using simulation-based analysis, thus it is
proposed to perform a structured analysis of the throughput (entities/
time) of the different areas or processes within the system, obtain the
capacity limitations of the different elements in the system and with
those values at hand, identify the correct bottleneck of the system. Once
we have identified it we can act in consequence to increase as much as
possible the utilization of the resources of the bottlenecks.

Flaw G) Lack of rigour when analysing the outcome.
One of the key advantages of simulation is its capacity to stretch or

compact time; therefore we can verify easily the performance of the
system under diverse circumstances. However, depending on the type
of tool used for the study it would take more or less time to achieve
results. With high-detailed simulation, it takes a long time to run a si-
mulation (due to all the calculations needed by the computer) and so
the time needed to perform a relevant number of replications in order
to achieve the proper level of confidence that allows us to draw reliable
conclusions. For that reason, analysts prefer or are commonly tempted
to run few replications with the consequent time-saving. However this

Fig. 2. Simplified version of modelling process. Sargent and Goldsman (2016).

Table 3
Operational validation classification.

Decision
Approach

Observable System Non-observable System

Objective
Approach

-Comparison using
statistical tests and
procedures

-Comparison to other models
using statistical tests
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practice is not recommended since one of the foundations of simulation
lies in the integration of stochastic processes and for concluding
something about a system with uncertainty we need to perform several
replications of the system under study. Therefore it is necessary to run
enough simulations so that the potential problems can be clearly
identified and bad consequences could be avoided in the simulation-
based planning phase instead of during the operation. The objective of
simulation-based studies should be beside obtaining only the perfor-
mance indicators of the system to identify those rare situations that
could lead to a collapse of the system, and those situations can only be
identified when variability is left to play. For this reason, it is suggested
to run enough replications and perform a scientific-based analysis using
statistics and data analysis.

In the next section, we will present two case studies which will il-
lustrate the potential problems we can incur if we do not pay the right
attention to the elements mentioned above. It is also fair to mention
that Ulgen and Shore (1996) proposed a series of steps for avoiding
potential errors that are worth to review in order to avoid falling into
the errors or pitfall mentioned in this article.

5. Case studies

In this section, a couple of examples are presented in order to ex-
emplify some of the common mistakes during the analysis of aviation
systems.

Case I. A new procedure for cleaning an aircraft
This study has been performed for a LCC in Spain (Mujica et al.,

2013) in which a new cleaning schema was proposed for reducing the
turnaround time. We identified that with different types of cleaning
services based on the flight history of the aircraft, it was possible to
achieve important reductions in the turnaround time.

Table 4 presents some performance indicators of the operation
previous to the implementation of the proposed cleaning procedure.

In the table, the statistics of the current process are presented. The
first two rows represent the maximum number of extra cleanings (an
extra cleaning is a cleaning operation that was not originally scheduled
during the stopover of the aircraft; instead it was requested by the crew)
and maximum number of delays. The information from the columns is
the average values, the limits of the range and the standard deviation of
the values. The last two rows represent the average values of the
turnaround time and the maximum turnaround times achieved during
the simulations correspondingly.

After implementing more specific cleaning operation for specific
situations during the stopover (Mujica et al., 2013) the following per-
formance (Table 5) was achieved.

Perhaps at the first sight the numbers do not say a lot about the
performance, for example concerning the turnaround times if we put
focus on the average value one can perceive that only one minute in
average was reduced with the new procedure and it might lead the
analyst to think that it is not really relevant or significant this

Available
Data

Use Part of the Data to constructthe
model

Other ways of 
Validation

Statistical
Validation

(Hypotesis Tests)

Test 
passed??

Turing Test Face
Validity

Extreme 
Values

Comparison
vs. Analytic

Yes

No

model.

Fig. 3. Methodology for validation.

Fig. 4. Qualitative comparison between a simulation program and reality (LHR: Rosenthal, 2008).

Table 4
Information of the current process.

Cleaning Operation

AVG Min. Max. STD. Dev.

Max. No. of Extra Cleanings 6.7 3 12 2.306
Max. No. of Delays 37.43 13 81 15.904
Avg. Turnaround Times 38.59 37.17 40.9 0.8262
Max. Turnaround Times 54.38 49.14 59.31 1.8539
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improvement (Flaw D). However, by analysing the whole picture
(average, range and standard deviation), we come up with the fol-
lowing reasoning.

By plotting the two performances (before and after), for having a
complete graph of the distribution of the turnaround values of the op-
eration, we obtain Fig. 5. The figure allows to illustrate the performance
of the operation once it is performed several times; furthermore, it can
be appreciated that the mean value moved a minute to the left in the
horizontal axis and so the whole distribution of turnaround times.
Under this situation, the percentage of expected flights with potential
delays (more than 40min) has been reduced to 0.2% while without the
implementation the expected delay had been around 2% of the total
flights. Therefore after implementation it is possible to understand the
true impact (which must be based on the expected values from the
probability distribution) in which the expected reduction in delayed
flights is of 90%. What can be illustrated with this example is that when
variability is present the punctual values provide little information. For
this reason, the suggestion is to evaluate the impact of the distributions
instead of just the indicators of the central tendency values in order to
come to a better analysis of the operations when variability is present.

Case II. The analysis of a future airport
We have studied the case of the new development of Lelystad

Airport in The Netherlands (Mujica et al., 2017). The objective of the
study was to identify potential problems when commercial traffic is
operative in the airport. For that purpose, it was necessary to develop a
simulation model that included the ground handling vehicles and the
airside elements of the airport such as taxiways, runway, stands, all
together with the corresponding technical restrictions. In addition,
three different configurations were evaluated (L-shape apron, Linear
with Nose In parking positions, Linear with parallel positions). In ad-
dition to the layout, we designed experiments on the model varying the
number of handling vehicles and the amount of traffic. Table 6 illus-
trates the domain of the variables used in the analysis.

The first two rows refer to the layout of the Apron and to the
number of ground handling vehicles respectively, while the last two
refer to the traffic demand (from low to high) and the allocation of
aircraft once they enter into the apron. The combinatorial analysis of

the different domain variables was performed and the graphical results
of the most relevant of them are presented in Figs. 6 and 7.

Fig. 6 depicts the dependency of the average times at Apron with
linear configuration and Nose-In parking positions with the different
variables (left-hand side) and the variability (half width of the 95%
confidence interval) of those average values (right-hand side). In this
case, the turnaround times that can be achieved range in the best case
between 30 and 35min with a corresponding variability (95% con-
fidence interval) of 1–2min.

On the other hand, Fig. 7 illustrates the performance that can be
obtained by a linear configuration in which the use of pushback trucks
is eliminated through the implementation of a parallel allocation of
stands where the aircraft uses its engines for the taxi-in taxi-out pro-
cedures. With this configuration, the interaction between aircraft and
service vehicles is high with the corresponding impact in variability as
it can be appreciated in the right-hand side of Fig. 7.

When interpreting the figures, again, at first sight, the reader could
incur in flaws D, E and G. If one only pays attention to average values
then one could conclude that the configuration of Fig. 6 is much better
than the taxi-in-out configuration (Fig. 7) since the average values are
smaller. However if we pay attention to the variability of Fig. 7 (right-
hand side), it can be appreciated that in spite of the present variability
it is possible to achieve as low turnaround operations as 32min with
standard deviations of 3 or 4min. The latter means that in some cases it
is possible to get 28min of turnaround time which could be very
competitive for the airport under study. Furthermore, the analysis can
drive the decision makers to investigate how to better coordinate the
operations of the vehicles in order to reduce the variability of the
system so that it is possible to maintain the turnaround times of 28min
or even less. In other words, by running the simulations it was possible
to reveal the configuration with the shortest turnarounds (Fig. 7); and it
also raises the questions on how to reduce the variability for main-
taining the short turnaround times while making it economically at-
tractive for the potential airlines to come.

6. Conclusions

In this article, the authors have made a review of the common
mistakes when applying simulation in the analysis and evaluation of
systems and infrastructures. Since simulation has become more and
more important and popular in the study of aviation systems, the au-
thors have put emphasis on how to avoid common mistakes in its ap-
plication in this realm. Some of the common mistakes when performing
a simulation-based analysis have been presented and discussed. These
types of errors have been identified during the years by the authors.

Table 5
Proposed Schema.

Cleaning Operation

AVG Min. Max. STD. Dev.

Max. No. of Extra Cleanings 1.65 1 4 0.8846
Max. No. of Delays 12.42 1 56 18.69
Avg. Turnaround Times 37.57 36.03 39.47 0.9127
Max. Turnaround Times 40.4 38.57 43.47 1.235

Fig. 5. The reduction of average times.

Table 6
Experimental Design for the Lelystad Case.

Input Variable Domain

Airside Layout Configuration A: L-shaped apron with Nose In
parking positions
Configuration B: Linear configuration with Nose In
parking positions
Configuration C: Linear with parallel parking
positions (Taxi-In- Taxi Out)

Ground Handling
Vehicles

Group 50%: 4 sets of 8 vehicles
Group Normal: 8 Sets of 8 Vehicles
Group FLEXIBLE: 8 loaders, 8 Baggage, 8 stairs, 6
Fuel, 6 water, 6 cleaning

Traffic Demand 1. Scenario 40K: 40,000 Air traffic movements
annually

2. Scenario 45K: 45,000 Air traffic movements
annually

3. Scenario 50K: 50,000 Air traffic movements
annually

Stand Allocation Allocation 1: Left-Right (L-R)
Allocation 2: Centre– Out (C-O)
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Simulation is a powerful methodology which is composed of different
steps, however with the rise of the machines and computer power many
software programs have been developed for easily constructing simu-
lation models. As it has been pointed out, the use of computer programs
have become very popular and sometimes their popularity shadows the
other key steps required for robust analysis which are necessary for the
success of a simulation project, and for its proficiency to provide value
to the industry. We strongly suggest practitioners, students and aca-
demics in the aviation industry interested in applying the simulation
methodology to use this article prior to the deployment and application
of the methodology; we are confident that by reading the presented
flaws, pitfalls and examples it will increase the chance of providing a
valuable result when applying the methodology.
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