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ABSTRACT 
Wepresent a mathematicalmodelforcalculatingtheoptimum number of batches of a set of products to be manufactured 
in equipment with limited capacity. Said optimization model is integer nonlinear, and although it has been proposed 
since 1989, the relevant literature contains very few solution methods and these use Lagrangean relaxation and 
branch and bound to obtain the optimum. This paper presents the way to get the optimum solution by employing 
dynamic programming. An example is solved and the results of computational tests are given, making comparisons 
with a branch and bound algorithm. The results show that the runtime for the dynamic programming method is 
competitive, in particular for instances of 20 or more products. This method allows managers and planners to make an 
analysis of the decision and its effects on the use of the equipment’s capacity, particularly those involved in chemical 
industry. 
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1. Introduction 
 
The people in charge of scheduling the production 
and the inventory control are responsible for taking 
the necessary decisions to answer three 
fundamental questions about their activity: what to 
manufacture?, how much to manufacture? And, 
when to manufacture?(Hadley and Within 1963; 
Sipper and Bulfin 1997). 
As a tool for answering these questions, there is a 
model known as Economic Order Quantity (EOQ). 
The original model assumes that the demand is 
deterministic and constant throughout the period 
and that there are no constraints in the system; 
however all the systems are limited in terms of 
available resources: money available for 
investment, warehouse space or the capacity of 
the equipment. In these cases variants of the EOQ 
model with constraints have been developed. 
One of these is the next one: companies from a 
variety of fields have processes based on 
standardized units, known as batches. For 
example, the chemical industry often schedules 

the manufacture of n products in equipment with 
limited capacity. Every material requires a certain 
time to be processed, for example, to achieve the 
desired concentration of the main material, 
moreover, there is a certain amount of time 
available in the reactor that can, for example, be 
expressed in hours a month.  
The people responsible for scheduling production 
must decide how many batches to manufacture, 
based on demand and inventory and production 
costs, subject to the equipment’s capacity. This 
problem is known as the Economic Number of 
Batches Problem (ENBP) (Sundararaghavan and 
Ahmed, 1989).  
Using the EOQ model directly to solve this problem 
is the equivalent of separately scheduling each 
product, which does not ensure a solution that 
satisfies the capacity constraint, let alone an 
optimum solution. The calculation methods for 
getting the optimum solution for instances of the 
problem, taking into account the capacity 
constraint are based on lagrangean relaxation.  
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Unlike other papers, this one shows how to solve 
instances of the problem using dynamic 
programming and thus determine the economic 
number of batches to be manufactured from 
several products in equipment with limited 
capacity. This strategy makes it possible to solve 
the problem while directly considering the integer 
variables. Even though, in 1963, Hadley and 
Within in their now classic book had already 
proposed the use of dynamic programming for 
constrained inventory systems, to date no paper 
has specifically dealt with scheduling the number 
of batches.  
We cite below the literature on this problem, 
followed by the solution strategy using dynamic 
programming for the ENBP model, solving some 
examples and presenting the results of the tests 
that were done. 
This article is developed as follows: section 2 
covers the history of inventory models and their 
solution methods; section 3 is devoted to the 
optimization model; an application example is 
presented in section 4; our conclusions are given 
section 5 and, finally, section 6 presents the 
references used in this paper. 
 
2. Background 
 
In order to solve inventory models with a 
constraint, the textbooks recommend the method 
of Lagrange multipliers to obtain the order quantity 
(Sipper and Bulfin 1997). The papers of Ziegler 
(1981), Rosenblat (1981), Ventura and Klein 
(1988), Rosenblat and Rothblum (1990) and 
Maloney and Klein (1993) reported improvements 
to the method, mainly in respect of calculating 
bounds for the Lagrange multipliers.  
It is worth mentioning that variants have been 
proposed for both the models and the solution 
techniques, so this is a good moment some briefly 
talk about lines of action: 
1. Planning of n product with common order cycles 
or ranges. These types of models are in keeping, 
for example, with systems where the purchase of 
the products is only carried out and where the 
demands for each product and, in consequence, 
the quantities Q to be ordered are very different 
from one another. Page and Paul (1976) observed 
that under these assumptions, the multipliers 
method does not ensure that the optimum will be 
obtained: if there is a large difference between the 
quantities Q of products then the inventory will 

reach maximum levels where the constraint may 
even be violated, so they proposed an 
improvement consisting of grouping the products 
into common order cycles in order only to order the 
quantities of those products that are considered in 
a given cycle. It is also worth mentioning the 
papers of Goyal (1978), Lee (1994) and, more 
recently, Boctor (2010). 
2. Planning of n products with individual cycles that 
are multiples of a basic cycle. In this approach, the 
quantity to be ordered depends on the individual 
cycle of the product and this is expressed as a 
multiple of a basic cycle: TkT ii =  . Literature on 
this line of action abounds. We recommend the 
papers of Elmagharaby (1978), Khouja, and Goyal 
(2008) and Hernández, Flores and Vazquez (2012) 
for reviews of the most recent proposals. Several 
exact methods based on enumeration and global 
optimization techniques have been developed, 
while heuristic methods have also been proposed 
and meta-heuristic techniques implemented. 
3. Planning of n products where the quantities are 
independent of the individual cycle. This paper falls 
within this line and below we shall discuss its 
contributions. 
In 1989, Sundararaghavan proposes the ENBP 
model with a single capacity constraint, that can be 
applied to batch production systems, as are 
commonly used in companies in the chemicals 
industry: pigments, resins, paints are some 
examples. The proposal consists of a heuristic 
algorithm to obtain the number of batches that 
minimizes the cost. Said algorithm uses 
Lagrangean relaxation to determine the lower 
bound of the decision variables and later 
heuristically rounds up or down to obtain the 
number of batches. 
In 1994, Brettahuer, Sidharta and Sethi propose a 
general model for production planning and 
inventory control. Among the problems with said 
general structure that are presented is 
Sundararaghavan’s, but they also show others with 
formulations that are specific cases of the general 
model, such as economic quantity programming or 
the stratified sampling problem. They propose the 
use of Lagrangean relaxation as a solution method 
for cases where the decision variables are 
continuous, while for integer variables they 
propose a heuristic method to obtain a good 
solution for the problem, starting from the relaxed 
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solution and then using branch and bound to 
obtain the optimum solution.  
They do the tests by solving an instance that is 
similar to the one presented by Sundararaghavan 
and with the order quantity (OQ) model. It is worth 
mentioning the fact that the article establishes the 
possibility of applying the procedure to models of 
the second line of action mentioned above, 
however they do not solve any instance of said 
class or specify the way to do it. 
In Bretthauer, Shetty, Syam and Vokurka (2006) 
the 1994 results are extended to problems with 
several constraints, establishing the optimality 
conditions for the relaxed problem and using 
branch and bound to solve instances of the 
problem, as well as doing computational tests. 
In Haksever and Moussourakis (2005) propose a 
mixed nonlinear optimization model in which, apart 
from the capacity constraints, they incorporate 
constraints for the number of orders, the planning 
approach to be employed (fixed time cycles for all 
the products or else independent cycles) as well as 
the batch size.  
Chen & Chen (2010) proposed a procedure to 
calculate the required number of machines with 
serial and batch processing characteristics, 
respectively. They proposed heuristic algorithms to 
obtain lower and upper bounds and a near-optimal 
of the number of machines with capability 
constraint. 
It is worth mentioning that we did not, in our review 
of the literature, find any other research on the 
model covered here, at least, no specifically. 
Whereas, a large number of papers have been 
devoted to the second line of action, even though 
the techniques require a greater computational 
effort (Rosenblatt, 1981). 
We end this section mentioning that in our case 
demand is deterministic, but there are other 
approaches where demand is considered 
stochastic; examples are papers by Yang, Yuan, 
Wuec&, Zhoud (2014)  where they considered a 
single-item periodic-review batch ordering 
inventory system with the consideration of the 
setup cost and the capacity constraint for each 
order over a finite planning horizon; in Lin, Chen & 
Chu (2014) authors developed a stochastic 
dynamic programming (SDP) model with an 
embedded linear programming (LP) to generate a 
capacity planning policy as the demand in each 
period is revealed and updated. 
 

3. Optimization model 
 
There is a list of products Ki ,...,2,1= which 
should be scheduled in a piece of equipment that 
has limited capacity T. The batch of each product 
requires a manufacturing time ti, there is also a 
preparation cost ai and a warehouse (commonly 
named inventory or carrying) costhi. The time that 
elapses between the preparation of the machine 
for two products is zero. 
The number of batches of a product is the quotient:   
where Qi is the quantity of orders and Di is the 
average demand and constant of product i. The 
cost of preparing the equipment for the production 
of a batch is given by: 

( ) ii
i

ii
iiP an

Q
DanC ==,     (1) 

The inventory cost is given by: 

( )
i

iiii
iiA n

hDQhnC
22, ==     (2) 

The total individual cost is the sum of the inventory 
and preparation cost: 
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For a system with ki ,...,2,1=  products, the total 
cost of the production run shall be: 
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The total equipment hours consumed is the sum of 
the time consumed in the preparation of each 
batch: 
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The person in charge of production planning must 
schedule at least one batch of each product, 
therefore 1inf, =in , therefore the range for the 

number of batches shall be in≤1 for the

Ki ,...,2,1= products, and the batches will also be 
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supposed to be integer quantities. The problem of 
scheduling the number of batches with a capacity 
constraint can be stated as follows: 
 
 
 
Minimize: 
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Subject to 
[ ] Tntntnt KK ≤+++ 2211    (7) 

sup,1 ii nn ≤≤ and integer Ki ,...,2,1=∀   (8) 
 
This is a nonlinear integer model where (6) is the 
cost function, which must be minimized, (7) 
corresponds to the equipment capacity constraint 
(hours) and, finally, (8) constrains the number of 
batches that can be manufactured and is an 
integer variable. Nonlinear integer models belong 
to the set of NP- hard problems (Martello &Toth, 
1990, Li & Sun, 2006). 
 
3.1 Solution employing dynamic programming. 
The dynamic programming method was proposed 
in the 1950s by Richard Bellman and is based on 
the principle of optimality: the property of an 
optimal policy is that irrespective of the initial state 
and the decisions of the subsequent states shall 
constitute an optimal policy in respect of the state 
resulting from the first decision (Bellman 1957).  
In order to apply the dynamic programming (DP) 
method, we must define the following essential 
aspects: the main problem must be decomposed 
into smaller sub-problems, which are known as 
stages, associated with each sub-problem or stage 
there will be a set of states and a set of feasible 
decisions, a state shows the consequences of 
some action or decision.  
The recursive optimization process, in other words, 
the steps that must be executed in order to solve 
each stage or sub-problem in an optimum manner, 
also has to be defined. Said process can be 
backwards (when starting the analysis in the last 
stage) or forwards (when started in the first stage) 
(Bellman 1957, Bradley, Hax and Magnanti, 1977). 
It is possible to implement this recursion process 

by defining the recursive equations and the 
boundary condition. 
In order to schedule the manufacture of a set of 
products, it is necessary to decide the number of 
batches to be manufactured in one piece of 
equipment subject to the capacity constraint given 
for example in hours. We shall assume the 
products are scheduled in the same order and the 
decision process is sequential. Each product i shall 
be a stage in the solution process. 
The scheduling process shall start with the last 
product K, then product 1−K is scheduled, 
followed by the product 2−K  until product 1 is 
reached. When scheduling product i, the 
manufacture of products Kii ,,2,1 ++ has been 
decided and there shall be a remnant of u 
equipment resource units which is an integer 
value, as the manufactured batches are integer 
units (Denardo, 2003). 
The available equipment hours shall be found in 
the range Tu ≤≤0 and a cost shall be incurred in 
the scheduling that can be expressed as follows: 
 
( ) =uifi , Manufacturingcost(inventory and 

preparation)of the products Kii ,,2.1 ++  using 
the u hours available on the equipment.(9) 
 
Only a set of production programs is feasible 
because they satisfy the capacity constraint posed 
for the optimization model, this constraint is posed 
as follows: 

unt ii ≤     (10) 
Starting the schedule with product K, we have: 
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Given that we want to find the minimum, then we 
have: 
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Continuing the backward programming until the 
product ( )Kii < , there are at least two products 
that should be programmed for their manufacture. 
When there are u available hours, the cost of 
manufacturingnibatches shallconsume iintu −   
hours, this is expressed in the following equation: 
 

( )iii
i

ii
ii ntuif
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+ + ,1

2 1  (15) 

 
The first term is the cost of manufacturing product 
i, the second is the cost of manufacturing product

1+i when there are iintu − available hours. 
Given that we are looking for the production 
schedule that minimizes the cost, we have: 
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Where, (16) is known as the recursive equation, 
and through these the stages i of the problem are 
linked and, in each stage the possible states

Tu ,,2,1,0 = of the available hours and each 
feasible value of ni are analyzed. The total cost of 
each stage is calculated as follows: We select the 
decision that gives the minimum cost in each stage 
i of the sum of the manufacturing cost for ni 
batches of product i plus the cost of manufacturing 
product 1+i when there are iintu − available 

hours, taking into account that the  itT
in =max,   

ratio establishes the maximum number of batches 
that can be manufactured, where  itT is the 

maximum integer less than  it
T

. 

 
4. Example of application (Sundararaghavan, 
1989) 

Suppose we wish to schedule the manufacture of 
three products in a piece of equipment with limited 
capacity for the number of available hours. The 
data for the demand Di, the cost of inventory hi, the 
preparation cost ai, the lower bound of the number 
of batches nmin, the resource capacity T, and the 
required hours Ti for the production of each batch 
is given in the table 1. 

 

D 3000 5000 8000 
h 20 30 15 
a 800 500 500 
Ti 20 18 10 
nmin 1 1 1 
T 300   

 
Table 1.The problem’s data (Sundararaghavan, 1989) 
 
Each article represents a stage for which the 
model consists of three stages, then for 4=i we 
have the boundary condition given by ( ) 0,4 =uf . 
Backward calculations for the analysis for the 
product 3 ( 3=i ) gives us the following table: 
 

(a) 

(u) ( ) ( )33433 ,4 ntufnf −+  n* 

10 60500 1 

20 31000 2 

30 21500 3 

40 17000 4 

50 14500 5 

60 13000 6 

70 12071.42 7 

80 11500 8 

90 11166.66 9 

100 11000 10 

110 10954.54 11 

120 11000 12 

130 11115.38 13 

140 11285.71 14 
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(b) 

(u)  n* 
150 11500 15 
160 11750 16 
170 12029.41 17 
180 12333.33 18 
190 12657.89 19 
200 13000 20 
210 13357.14 21 
220 13727.27 22 
230 14108.69 23 
240 14500 24 
250 14900 25 
260 15307.69 26 
270 15722.22 27 
280 16142.85 28 
290 16568.96 29 
300 17000 30 

 
Table 2. Calculations for 3=i . (a) u=(10-140); 

(b) u=(150 – 300) 

For questions of space, we only show states
300,20,10 =u (multiples of t3) to visualize part 

of the calculation. We can observe that the 
minimum capacity for scheduling a batch of 
product 3 is 10 hours, therefore for states

9,2,1,0 =u there are no feasible solutions.  
Tables3 and 4 show the calculations 
corresponding to products 2 and 1. One of the 
advantages of a dynamic programming model in 
the form of a table, is that its analysis facilitates the 
visualization of a decision for the production 
programmers, as well as having optimum solutions 
in each stage, for which the table corresponding to 
product 2 shall be analyzed. 
It must once again be pointed out that, by way of 
illustration, the states are shown in multiples of ti 
so as to be able to visualize part of the 
calculations. In the case of product 2 (Table 3), 
when 18 hours are available at least one product 
can be manufactured, however this consumes all 
the available capacity so it would not be possible 
to schedule a batch of product 1, therefore this 
entry corresponds to a solution that is not feasible. 

Likewise, for the case where there are 18 available 
hours, then the manufacture of a batch of product 
2 can be scheduled, dedicating the rest (18 hours) 
to the manufacture of a batch of product 3, 
however it is not feasible to schedule two batches 
of product 2 since once again all the available 
capacity would be consumed.  
Finally the maximum number of batches that could 
be manufactured is 15, since a schedule of 16 
batches consumes all the capacity and we must 
schedule yet another product: number 3. In the 
case of product 1 (Table 4), a feasible schedule 
can contain, as a maximum, 13 batches, as two 
other products must be scheduled: 2 and 3.Table 5 
shows the solution obtained by dynamic 
programming compared to the one reported in 
Sundararaghavan (1989).  
The solution reported by Sundararaghavan in 1989 
using his heuristic method is $36414.28, using the 
dynamic programming method we get a cost 
solution of $36080.90, which is 0.9155% less 
(Table 5). The number of batches differs in product 
3, the solution obtained using the heuristic 
procedure is 8 batches, and with dynamic 
programming, the solution points to producing 9 
batches.  
Finally, the solution obtained using the heuristic 
procedure requires 286 hours or 95.33% of the 
total capacity, whereas the solution obtained with 
dynamic programming requires 98.66% of the total 
capacity. The difference between both solutions is 
3.378%.

( ) ( )33433 ,4 ntufnf −+
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 ( ) ( )22322 ,3 ntufnf −+    

u 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ( )*nf  n* 

18                                   

36 136000                             136000 1 

54 97000 99000                           97000 2 

72 90000 60000 87000                         60000 3 

90 87571 53000 43500 81250                       43500 3 

108 86667 50571 41000 42250 78000                     41000 3 

126 86500 49667 38571 35250 39000 76000                   35250 4 

144 86500 49500 37667 32821 32000 37000 74714                 32000 5 

162 86786 49500 37500 31917 30500 30000 35714 73875               30000 6 

180 87250 49786 37500 31750 28667 26500 28714 30375 73333             26500 6 

198 87833 50250 37786 31750 28500 26667 26286 27875 34333 73000           26286 7 

216 88158 50833 38250 32036 28500 26500 25381 25446 27333 34000 72818         25381 7 

234 88857 51158 38833 32500 28786 26500 25214 24542 24905 27000 33818 72750       24542 8 

252 89609 51857 39158 33083 29250 26786 25214 24375 24000 24571 26818 21500 72769     21500 12 

270 90400 52609 39857 33408 29833 27250 25500 24375 23833 23667 24390 26750 33769 72857   23667 10 

288 91222 53400 40609 34107 30158 27833 25964 24661 23833 23500 23485 24321 26769 33857 73000 23485 11 

 
Table 3. Calculationsfor 2=i  

 
 
 

 ( ) ( )11211 ,2 ntufnf −+    

u 1 2 3 4 5 6 7 8 9 10 11 12 13  ( )*nf  n* 

300 54466.6 38100 36941.67 36080.9 36285.7 36300 41885.7 45400 51533.3 54500 71527.2 109100 148707.7 36080.9  4 
 
 
Table 4. Calculationsfor 1=i  
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 n*   
Product 1 2 3 Capacity 

(hrs) 
Cost 
($) 

DP 4 7 9 296 36080.9 
Sundararaghavan 
(1989) 

 
4 

 
7 

 
8 

 
286 

 
36414.2 

 
Table5. Solutions obtained with DP and 
Sundararaghavan’s heuristic 
 
5. Computational tests 
A series of computational tests were done to 
empirically study the behavior of the algorithm, 
mainly in respect of the size of the instance to be 
solved. A variety of problems were solved in this 
case, where the demand parameters (D), inventory 
cost (h), preparation cost (a), hours per batch (ti) 
and capacity of the equipment (T) were randomly 
generated using a uniform distribution function (U). 
Only 5 problems were generated for each value of 
the size of products (n). Table 6 shows the ranges 
used for the generation and following the 
guidelines given in other papers (Bretthauer, 
Shetty, Siam and White 1994, Sundararaghavan 
and Ahmed 1989). 
 

Parameter Interval 

Number of products(n) 3,5,10,20,30, 50 

Demand (Di) U (4000- 9000) 

Inventorycost (hi) U (5 – 25) 

Preparationcost (ai) U (2000 – 5000) 

Resource consumption 

per batch (ti) 
U (1 – 5) 

Availablecapacity (T) U (300 – 800) 

 

Table 6. Ranges for randomly generating tests 

parameters 

The dynamic programming algorithm was encoded 
in Fortran 94 language, the optimization model 

was built in LINGO (equations 6 to 8) for the sake 
of comparisons and the branch and bound 
algorithm was employed to solve the instances. 
The runs were solved on a computer with a 
2.5GHz Intel Core i5 processor and 4 G of RAM. 
The runtime required for the DP algorithm was 
recorded and, in the case of branch and bound 
method, the time reported by the LINGO package 
was recorded. It is worth mentioning the following: 
in some prior tests with the optimization model we 
observed that the branch and bound algorithm 
does not return any solution for instances of 50 
products after iterating for 60 minutes, therefore it 
was decided, in the case of the formal 
experiments, to stop running the algorithm at a 
maximum time of 60 minutes.Tables 7, 8 and 9 
show the results obtained for the instances with 3, 
5, 10, 20, 30 and 50 products.  
In the case of instances with n=3 and 5 products 
(Table 7), both the dynamic programming model 
and the branch and bound method reached the 
optimum solution within the established time limit. 
Dynamic programming takes under 1 second for 
instances with n =3 products and about 0.01 
seconds when n =5 products and the branch and 
bound method takes under 1 second. 
 

 

 3 products 

Test DP 
Exec. time 

(sec.) 
B-B 

algorithm 
Exec. time 

(sec.) 
1 135288 <0.01 135288 <0.01 
2 140721 <0.01 140721 <0.01 
3 132968 <0.01 132968 <0.01 
4 137897 <0.01 137897 <0.01 
5 119285 <0.01 119285 <0.01 

 5 products 
1 238101 0.01 238101 <0.01 
2 215974 <0.01  215974 <0.01 
3 215243 0.01 215243 <0.01 

4 229473 0.01 229473 <0.01 
5 200997 0.01 200997 <0.01 

 

Table 7. Tests results with 3 and 5 products 
In the case of problems with n=10 (Table 8), the 
dynamic programming model requires at most 0.03 
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seconds, the branch and bound method takes 
under one second. 
When n =20 (Table 8), the dynamic programming 
model finds the optimum solution in average of 
0.0325 seconds, whereas we start to observe that 
the branch and bound method takes more time to 
find the solution, employing up to 4 seconds to get 
the optimum solution. 
When n =30 and 50 products (Table 9), the 
dynamic programming algorithm takes an average 
of 0.070 and 0.246 seconds respectively. The 
branch and bound method takes up to 202 
seconds when n =30. The case of n =50 was 
particularly interesting, as the runtime was used up 
in every case without the branch and bound 
algorithm achieving the optimum solution. 
Figure 1 shows the speed in growth of the runtime 
for the dynamic programming algorithm in respect 
of the number of products (n); we can see that said 
growth is fast, however, the experiments showed 
that, in all the tests (including the 50-product tests), 
the optimum for the problem was found within the 
established time, unlike the branch and bound 
algorithm. 
 10 products 

Test DP 
Exec. time 

(sec.) 
B-B 

algorithm 
Exec.time 

(sec) 
1 431925 0.01 431925 <0.01 
2 400276 0.01 400276 <0.01 
3 446447 0.01 446447 <0.01 
4 524708 0.01 524708 <0.01 
5 426975 0.03 426975 <0.01 

 20 products 

Test DP 
Exec. time 

(sec.) 
B-B 

algorithm 
Exec.time 

(sec) 
1 968149 0.03 968149 3 
2 900653 <0.01  900653 3 
3 849028 0.03 849028 3 
4 948993 0.06 948993 <0.01 
5 943513 0.01 943513 4 

 
Table 8. Test results with 10 and 20 products 

 
 
 

 

 30 products 

Test DP Exec.time 
(sec.) 

B-B 
algorithm 

Exec. Time 
(sec.) 

1 1340785 0.05 1340785 74 
2 1351117 0.06 1351117 54 
3 1215526 0.15 1215526 202 
4 1790637 0.02 1790637 14 
5 1362124 0.07 1362124 32 

 

 50 products 

Test DP Exec.time 
(sec.) 

B-B 
algorithm 

Exec.time 
(sec.) 

1 2361754 0.18 No Sol. > 3600 

2 3220948 0.05 No sol. > 3600 
3 2328213 0.28 No sol. > 3600 

4 2517709 0.19 No sol. > 3600 

5 2243616 0.53 No sol. > 3600 
 

Table 9. Test results with 30 and 50 products 

 

 
 
Figure 1. Execution time vs. number of products(n) 
 
6. Conclusions  
A variant of the production planning problems 
consists of determining the quantity of batches of a 
set of products that have to be manufactured on 
equipment with limited capacity. 
The mathematical model is of the non-linear 
integer type as the decision variables are entities 
that are generally indivisible. Although several 
solution proposals have been developed, these 
need the problem to be relaxed and then, by 
applying some technique, the integer solution of 
the problem is obtained. In this paper shows the 
way to find the optimum solution for the problem of 
scheduling the production for the number of 
batches in equipment with limited capacity, using 
dynamic programming. 
The computational tests show that the DP method 
requires a similar runtime to the branch and bound 
method for instances of 3, 5 and 10 products, 
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whereas for 20 and 30 products the dynamic 
programming algorithm finds the solution faster 
and in the case of 50 only dynamic programming 
finds a solution within the maximum established 
runtime for the experiments (60 minutes). 
When put in the form of a table, the dynamic 
programming algorithm facilitates the visualization, 
in this case, of the effects of the production-
scheduling decisions, specifically in the 
consumption of capacity, as well as the feasible 
production schedules and getting the optimum in 
each stage. 
It is a well-known fact that one of problems with the 
DP method is that when the number of constraints 
increases, the complexity and the number of 
required calculations also increase 
(dimensionality), however this analysis strategy is 
a tool that can be used during the first solution 
phases in these particular types of problems. The 
behavior remains to be studied of the dynamic 
programming algorithm using the bounds of the 
decision variables that are obtained when the 
relaxed problem is solved. 
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